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Abstract—We consider the problem of differenti-

ating a function specified by noisy data. Regulariz-

ing the differentiation process avoids the noise am-

plification of finite-difference methods. We use total-

variation regularization, which allows for discontinu-

ous solutions. The resulting simple algorithm accu-

rately differentiates noisy functions, including those

which have a discontinuous derivative.
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1 Introduction

In many scientific applications, it is necessary to compute
the derivative of functions specified by data. Conven-
tional finite-difference approximations will greatly am-
plify any noise present in the data. Denoising the data
before or after differentiating does not generally give sat-
isfactory results. (See an example in Section 4.)

A method which does give good results is to regularize
the differentiation process itself. This guarantees that
the computed derivative will have some degree of regular-
ity, to an extent that is often under control by adjusting
parameters. A common framework for this is Tikhonov
regularization [1] of the corresponding inverse problem.
That is, the derivative of a function f , say on [0, L], is
the minimizer of the functional

F (u) = αR(u) + DF (Au − f), (1)

where R(u) is a regularization or penalty term that pe-
nalizes irregularity in u, Au(x) =

∫ x

0
u is the operator

of antidifferentiation, DF (Au− f) is a data fidelity term
that penalizes discrepancy between Au and f , and α is
a regularization parameter that controls the balance be-
tween the two terms. DF (·) is most commonly the square

of the L2 norm, DF (·) =
∫ L

0
| · |2, as is appropriate if f

has additive, Gaussian noise. (See [2] for an alternative
in the case of Poisson noise.) In [1], the regularization
term is the squared L2 norm; this controls the size of u,
without forcing minimizers to be regular. Tikhonov reg-
ularization was first applied to numerical differentiation
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by Cullum [3], where the regularization is the squared H1

norm, R(u) =
∫ L

0
|u′|2. This forces minimizers to be con-

tinuous, as is required for the H1 norm to be finite. This
prevents the accurate differentiation of functions with sin-
gular points.

Other variational methods have the same drawback of
forcing smoothness. An approach that penalizes the L2

norm of u′′ forces the minimizer to be a cubic spline (see
[4, 5, 6]). The variational approach of Knowles and Wal-
lace [7] does not fall into the category of Tikhonov regu-
larization, but explicitly assumes that u is smooth.

2 Total-variation regularization

We propose to use total-variation regularization in (1).
We will thus compute the derivative of f on [0, L] as the
minimizer of the functional

F (u) = α

∫ L

0

|u′| +
1

2

∫ L

0

|Au − f |2. (2)

We assume f ∈ L2 (an empty assumption in the discrete
case), and for convenience that f(0) = 0. (In practice we
simply subtract f(0) from f .) The functional F is defined
on BV [0, L], the space of functions of bounded variation.
It is in fact continuous on BV , as BV is continuously
embedded in L2, and A is continuous on L2 (being an
integral operator with bounded kernel). Existence of a
minimizer for F follows from the compactness of BV in
L2 [8, p. 152] and the lower semicontinuity of the BV
seminorm [8, p. 120]. This and the strict convexity of F
are sufficient to guarantee that F has a unique minimizer
u∗.

Use of total variation accomplishes two things. It sup-
presses noise, as a noisy function will have a large total
variation. It also does not suppress jump discontinuities,
unlike typical regularizations. This allows for the com-
putation of discontinuous derivatives, and the detection
of corners and edges in noisy data.

Total-variation regularization is due to Rudin, Osher, and
Fatemi in [9]. It has since found many applications in im-
age processing. Replacing A in the two-dimensional ana-
log of (2) with the identity operator gives a method for
denoising an image f . See [10, 11] for an example where



A is the Abel transform, giving a method for regularizing
Abel inversion.

3 Numerical implementation

A simple approach to minimizing (2) is gradient descent.
This amounts to evolving to stationarity the PDE ob-
tained from the Euler-Lagrange equation:

ut = α
d

dx

u′

|u′|
− AT (Au − f), (3)

where AT v(x) =
∫ L

x
v is the L2-adjoint of A. Replac-

ing the |u′| in the denominator with
√

(u′)2 + ǫ for some
small ǫ > 0 avoids division by zero. Typically, (3) is
implemented with explicit time marching, with ut dis-
cretized as (un+1 − un)/∆t for some fixed ∆t.

The problem with (3) is that convergence is slow. A faster
algorithm is the lagged diffusivity method of Vogel and
Oman [12]. The idea is to replace at each iteration of

(3) the nonlinear differential operator u 7→ d
dx

u′

|u′| with

the linear operator u 7→ d
dx

u′

|u′

n
| . The algorithm has been

proven to converge to the minimizer of F [13].

We consider two discrete implementations of the lagged
diffusivity algorithm. The first uses explicit matrix con-
structions, and is faster for smaller problems, but be-
comes impractical for data of more than a few thou-
sand points. We assume that u is defined on a uniform
grid {xi}

L
0 = {0,∆x, 2∆x, . . . , L}. Derivatives of u are

computed halfway between grid points as centered differ-
ences, Du(xi+∆x/2) = u(xi+1)−u(xi). This defines our
L×(L+1) differentiation matrix D. This approach avoids
the consideration of boundary conditions for differentia-
tion, and we find it gives better algorithmic results at the
boundary. Integrals of u are likewise computed halfway
between grid points, using the trapezoid rule to define an
L × (L + 1) matrix A. Let En be the diagonal matrix

whose ith entry is
(

(un(xi) − un(xi−1))
2 + ǫ

)−1/2
. Let

Ln = ∆xDT EnD, Hn = KT K + αLn. The matrix Hn is
an approximation to the Hessian of F at un. The update
sn = un+1 − un is the solution to Hnsn = −gn, where
gn = KT (Kun − f) + αLnun, and we solve the equation
using Matlab’s backslash operator. For further algorithm
details, see [14].

For larger problems, we use a modified version that
avoids explicit matrices, and uses simpler numerics. The
differentiation matrix D is constructed as the square,
sparse matrix for simple forward differences, with peri-
odic boundary conditions. We use a function handle for
A, simply using Matlab’s cumsum operator, as well as for
AT . It is important that the discretization of AT be con-
sistent with the discretization of A, in the sense that if
one were to use the function handles to construct ma-
trices, then they would be transposes of each other. In

other respects the algorithm is as above, except the defi-
nition of En now uses periodic boundary conditions, and
the equation Hnsn = −gn is solved using preconditioned
conjugate gradient. For the preconditioner, we perform
incomplete-Cholesky factorization on the sum of αLn and
the diagonal matrix whose entries are the row sums of
AT A, these sums being computable analytically.

Less straightforward is the choice of the regularization
parameter α. One approach is to use the discrepancy
principle: the mean-squared difference between Au∗ and
f should equal the variance of the noise in f . This has
the effect of choosing the most regular solution to the ill-
posed inverse problem Au = f that is consistent with the
data f . In practice, the noise in f is not generally known,
but the noise variance can be estimated by comparing f
with a smoothed version of f . The other approach is
simply to use trial and error, adjusting α to obtain the
desired balance between suppression of oscillations and
fidelity to the data. In the next section we will see an
example showing the effect of the value of α.

4 Examples

4.1 A simple nonsmooth example

Let f0(x) = |x−1/2|, defined at 100 evenly-spaced points
in [0, 1]. We obtain f by adding Gaussian noise of stan-
dard deviation 0.05. Figure 1 shows the resulting f .
First, we show in Figure 2 the result of computing f ′ by
simple centered differencing. The noise has been greatly
amplified, so much that denoising the result is hopeless.

We compare with this the result in Figure 3 of denoising
f before computing f ′ by differencing. The denoising is
done by H1 regularization, minimizing

α

∫ L

0

|u′|2 +
1

2

∫ L

0

|u − f |2, (4)

an appropriate denoising mechanism for continuous func-
tions. We use α = 3.5 × 10−3, using the discrepancy
principle, as this results in the L2 norm of u∗ − f being
0.5, the expected value of the L2 norm of the noise vec-
tor f − f0. The residual noise in the denoised f is still
amplified enough by the differentiation process to give an
unsatisfactory result.

Now we implement our total-variation regularized differ-
entiation, (2). We use the matrix-based version described
above, using α = 0.2 and ǫ = 10−6, initializing with the
naive derivative (specifically [ 0; diff( f ); 0 ], to
obtain a vector of the appropriate size). Although conver-
gence is nearly complete after 100 iterations, the points
closest to the jump move much more slowly, adopting
their final positions after 7000 iterations. This takes just
13.1 s, running on a conventional dual-core desktop. The
result is in Figure 4. The overall shape of f ′

0 is captured
almost perfectly. The jump is correctly located. The one
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Figure 1: The function f , obtained from |x − 1/2| by adding Gaussian noise of standard deviation 0.05.

inaccuracy is the size of the jump: there is a loss of con-
trast, which is typical of total-variation regularization in
the presence of noise. Decreasing the size of the jump re-
duces the penalty term in (2), at the expense of increasing
the data-fidelity term.

We also show the result of applying the antidifferentiation
operator to the computed f ′, and compare with f0 in
Figure 5. The corner is sharp and the lines are straight,
though a little too flat.

Respirometry data

Now we consider data obtained from a whole-room
calorimeter, courtesy of Edward L. Melanson of the Uni-
versity of Colorado Denver. The metabolic rate of a
subject within the calorimeter can be determined via
respirometry, the measurement of oxygen consumption
and carbon dioxide production within the room. The raw
data traces need to undergo response corrections in order
to be useful, which involves differentiation. Quoting [15]:

In essence, the first derivative of the trace is cal-
culated, multiplied by a constant derived from
the volume of the room and the volumetric flow
rate, and added to the original data. Because
of the long time constant of the room (5 h),
the multiplicative constant is very large. Conse-
quently, any significant noise in the derivatized
data will overwhelm the original trace.

Thus we see the need to regularize the differentiation pro-
cess for this application.

In Figure 6 is an example of the raw data for the oxygen
consumption rate, which needs to be differentiated for
the purposes of response correction. The data consists of
samples taken every second for most of a day, for a total of
82,799 samples. In Figure 7 is the result of computing the
unregularized, finite-difference derivative. If restricted to
the same vertical range as the following plots, the plot
would be a solid black rectangle.

The data size is much too large for the explicit-matrix im-
plementation, so we use the implicit approach. In each
case we use 60 iterations, taking about 5 minutes. We
compare the total-variation regularized derivative with
that computed with H1 regularization, for two different
regularization strengths. First, a stronger regularization,
with a value of α = 0.1 for the TV case. The result is in
Figure 8. We then adjust the parameter for H1 regular-
ization until the curve matches the TV result away from
the large bump, namely α = 500. See Figure 9. A value
of ǫ = 10−8 was used in both cases. The TV regulariza-
tion is much more tolerant of rapid rises and falls, while
the H1 result smooths away this information. We also
compare the results of antidifferentiating the derivative
and comparing with the original trace, with Figure 10
displaying a zoomed-in portion. The H1 curve is un-
able to conform to the peak, as the H1 regularization
term heavily penalizes what would be the curvature of
the curve in this figure. Away from the peak, the inte-
grated derivatives follow the original trace, but not too
closely, ignoring small-scale fluctuations. This is the ef-
fect of the regularization, with the choice of α serving
to determine the scale of fluctuation that is considered
insignificant.
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Figure 2: Computing f ′ with finite differences greatly amplifies noise.

The above result would be appropriate if the rapid rise
and fall in the derivative corresponded to the only feature
of interest. Now we examine the result of weaker regular-
ization, so as to preserve smaller-scale features. In this
instance we use α = 10−3 for the TV regularization. As
before, we choose α for the H1 regularization so that the
result matches the TV result over most of the time pe-
riod, in this case α = 1. This time a slightly larger value
of ǫ = 10−6 was required, in order to offset the poorer
conditioning of the linear system solved in the lagged dif-
fusivity algorithm when α is smaller. (In general, there is
a tradeoff between better conditioning with larger values
of ǫ and greater accuracy with smaller values.)

Figures 11 and 12 show the results. Both derivatives cap-
ture more oscillations, including more structure in the
rapid rise and fall. But the TV result is able to capture a
discontinuity in the derivative that the H1 result smooths
away. When we compare the antiderivatives with the
original function (Figure 13), we find that they follow
the trace much more closely, conforming to smaller-scale
fluctuations. Zooming in further, we see the greater cur-
vature penalty on the H1 curve prevents it from following
the sharp corner, thus missing the discontinuous drop in
the derivative.

5 Conclusions

We presented a method for regularizing the numerical
derivative process, using total-variation regularization.
Unlike previously developed methods, the TV method al-
lows for discontinuities in the derivatives, as desired when
differentiating data corresponding to nonsmooth func-
tions. We used the lagged diffusivity algorithm, which

enjoys proven convergence properties, with one imple-
mentation that works rapidly for small problems, and a
second more suitable for large problems. The TV regu-
larization allows the derivative to capture more features
of the data, while adjusting the regularization parame-
ter controls the scale of fluctuations in the data that are
ignored.
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Figure 3: The function f is denoised, then differentiated with finite differences. The result is noisy and inaccurate.
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Figure 4: Regularizing the differentiation process with total-variation produces a noiseless derivative with a correctly
located, sharp jump. The discrepancy of the values from ±1 are due to contrast loss, an artifact of total variation
methods in the presence of noise.
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Figure 5: The function f0 (solid line) and the antidifferentiated numerical derivative (circles). The numerically
computed function is very similar to the exact one.
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Figure 6: The trace of raw oxygen consumption data, consisting of 82,799 samples, one per second.
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Figure 7: Computing the derivative with finite differences gives a useless result.
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Figure 8: The derivative computed with strong TV regularization. Despite the heavy smoothing, the rapid rise and
fall in the derivative is captured well.
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Figure 9: Using H1 regularization, the jumps in the derivative are smoothed away.

2 2.5 3 3.5 4 4.5 5 5.5

x 10
4

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t (s)

(L
/
m

in
)

 

 
f − f(0)
K(u∗

TV
)

K(u∗
H1 )

Figure 10: Integrating the derivatives and comparing with the original function, we find the TV result follows the
curve more closely near the peak. Both curves follow the curve away from the peak, but ignore small fluctuations,
to a degree determined by α.
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Figure 11: The derivative computed with lesser TV regularization, preserving more structure, including a disconti-
nuity in the derivative.
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Figure 12: Using H1 regularization, the discontinuity in the derivative is smoothed away.
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Figure 13: Integrating the derivatives and comparing with the original function, we find that with the weaker
regularization, the integrals follow the curve closely, effectively considering much lesser fluctuations to be significant.
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Figure 14: A closer look reveals that unlike the TV result, the H1 curve cannot follow the high curvature at the
corner, preventing the computed derivative from dropping discontinuously.


